RFID Tag Data Standards

Kenneth R. Traub, PhD
Ken Traub Consulting LLC
12 April 2011
Outline for Today

• 11:30: RFID Visibility Data for Business Applications
 – What’s the important data, and how do you use it?

• 12:15: RFID Data Capture Software
 – How do you collect the important data?

• Lunch

• 1:45: Putting It Together: Architecture, Product Selection and IT Governance
 – How do you build a complete system for the enterprise?

• 2:30 (now): RFID Tag Data Standards
• 3:30: RFID Data-Capture Standards: LLRP and ALE
What’s In a Tag?

- More data (up to kilobytes)
- Random access
- Writeable as well as readable
- Fancy features (passwords, access control, crypto, “files”, sensors, …)
- Info about the tag’s chip itself

⇒ RFID Tag Data more complex than bar code!
Types of Tag Data

Identification		

What’s the tag attached to?		

Supplementary data		

Info about the thing the tag’s attached to (height, weight, expiration…)		

Control Data		

To operate various tag functions (passwords, filter values, …)		

Tag Manufacture Data		

Make, model, mfr serial, …		
Gen 2 RFID Memory Map

Bank 00 (Reserved)
- 00h: Kill Passwd
- 10h: Access Passwd

Bank 01 (EPC)
- 00h: CRC
- 10h: PC Bits
- 20h: EPC
- 210h: XPC Bits

Bank 10 (TID)
- 00h: TID
- 10h: XTID

Bank 11 (User)
- 00h: DFSID
- 08h: Encoded Data Elements

Legend:
- Green = Business Data
- Pink = Control Information
- Yellow = Tag Manufacture Information

Attribute bits
Filter value
EPC Tag Data Standard

- EPC “pure identity” URI
- Correspondence specified in TDS
- GS1 keys (specified in Gen Specs)
- GS1 Alas (specified in Gen Specs)

Independent of RFID

RFID-Specific

- Attribute Values
- Filter Values
- EPC “tag URI”
- EPC binary encoding

Key
- = Business Data
- = Control Info
- = Tag Manufacture Info

Reserved Bank contents (specified in Gen2 Spec)
EPC Bank contents
TID Bank contents
User Memory Bank contents

Gen 2 RFID Tag (specified in Gen2 Spec)
EPC Tag Data Standard

- EPC "pure identity" URI
- GS1 keys (specified in Gen Specs)
- GS1 AIs (specified in Gen Specs)
- Correspondence specified in TDS
- EPC "tag URI"
- Attribute Values
- Filter Values
- EPC binary encoding
- Reserved Bank contents (specified in Gen2 Spec)
- EPC Bank contents
- TID Bank contents
- User Memory Bank contents
- Gen 2 RFID Tag (specified in Gen2 Spec)

- Independent of RFID
- RFID-Specific

Key:
-
- = Business Data
- = Control Info
- = Tag Manufacture Info

Other Data
EPC Identification Schemes

<table>
<thead>
<tr>
<th>EPC Scheme</th>
<th>Related GS1 Identification Key</th>
<th>Use</th>
<th>Tag Encodings</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGTIN</td>
<td>GTIN (with added serial #)</td>
<td>Trade items</td>
<td>SGTIN-96, SGTIN-198</td>
</tr>
<tr>
<td>SSCC</td>
<td>SSCC</td>
<td>Pallet or other unitized loads</td>
<td>SSCC-96</td>
</tr>
<tr>
<td>SGLN</td>
<td>GLN (with optional extension #)</td>
<td>Locations</td>
<td>SGLN-96, SGLN-195</td>
</tr>
<tr>
<td>GRAI</td>
<td>GRAI (serial number mandatory)</td>
<td>Returnable/reusable assets</td>
<td>GRAI-96, GRAI-170</td>
</tr>
<tr>
<td>GIAI</td>
<td>GIAI</td>
<td>Fixed assets</td>
<td>GIAI-96, GIAI-202</td>
</tr>
<tr>
<td>GDTI</td>
<td>GDTI (serial number mandatory)</td>
<td>Documents</td>
<td>GDTI-96, GDTI-113</td>
</tr>
<tr>
<td>GSRN</td>
<td>GSRN</td>
<td>Service relations (e.g., loyalty card)</td>
<td>GSRN-96</td>
</tr>
<tr>
<td>GID</td>
<td></td>
<td>Auto-ID Center legacy</td>
<td>GID-96</td>
</tr>
<tr>
<td>DoD</td>
<td></td>
<td>US Dept of Defense</td>
<td>DoD-96</td>
</tr>
</tbody>
</table>
Different EPC Forms

- **GS1 Element String** – as used in bar code

 (01) 1 0614141 00743 8 (21) 401

 --------- GTIN --------- Serial

- **Pure Identity URI** – just the EPC – as used in EPCIS

 urn:epc:id:sgtin:0614141.100743.401

- **Tag URI** – in software when all tag info needs to be represented – as used in RFID middleware

 urn:epc:tag:sgtin-96:3.0614141.100743.401

- **Binary** – on-tag representation

 001100000111010000100101011110111100001100010010111110000000000000000000000001100100

 3074257bf46261c00000191 (Hexadecimal equivalent)
Bar Code to EPC URI

(01) 1 0614141 12345 2 (21) 401

urn:epc:id:sgtin:0614141.112345.401

Check digit not included in EPC
URI to RFID Tag

- In information systems, an EPC is a URI:
 \[\text{urn:epc:id:sgtin:0614141.112345.401} \]
- Too big to encode directly into a 96-bit tag
- So, an equivalent binary form is used:
 \[\text{urn:epc:id:sgtin:0614141.112345.401} \]

<table>
<thead>
<tr>
<th>Header</th>
<th>Filter Value</th>
<th>Partition</th>
<th>Company Prefix</th>
<th>Item Reference</th>
<th>Serial Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 bits</td>
<td>3 bits</td>
<td>3 bits</td>
<td>20-40 bits</td>
<td>24-4 bits</td>
<td>38 bits</td>
</tr>
</tbody>
</table>

x30 for SGTIN-96 Additional control info to help isolate tag populations
Same EPC, different binary forms

- An SGTIN serial number may be up to 20 alphanumeric characters (from GS1 standard)
- Too large for 96-bit tag
- So, two binary variants:
 - SGTIN-96 handles all-numeric serial number whose value is $< 2^{38}$
 - SGTIN-198 handles any serial number, 1–20 alphanumeric characters
- Latter becoming less rare, as tags with that capacity have now become available
Where Different Forms are Used

- Moral: Business apps should never use the binary format!
EPC Translation – Resources

• Free interactive translators

• Usually included in commercial “RFID Middleware” software
 – Always present in an ALE implementation

• Translator-only software libraries
 – FossTrak TDT (free)
 – www.kentraub.com/tools.html (see the FAQ)
EPC Tag Data Standard

- EPC “pure identity” URI
 - Correspondence specified in TDS
- GS1 keys (specified in Gen Specs)
- GS1 Alns (specified in Gen Specs)

Independent of RFID

RFID-Specific

- Attribute Values
- Filter Values
- EPC binary encoding

- Reserved Bank contents (specified in Gen2 Spec)
- EPC Bank contents
- TID Bank contents
- User Memory Bank contents

Key
- □ = Business Data
- □ = Control Info
- □ = Tag Manufacture Info

Gen 2 RFID Tag (specified in Gen2 Spec)
Supplementary Data – GS1 AIs

<table>
<thead>
<tr>
<th>AI</th>
<th>Description</th>
<th>Format</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Batch or Lot Number</td>
<td>an..20</td>
<td>BATCH/LOT</td>
</tr>
<tr>
<td>11</td>
<td>Production Date (YYMMDD)</td>
<td>n6</td>
<td>PROD DATE</td>
</tr>
<tr>
<td>12</td>
<td>Due Date (YYMMDD)</td>
<td>n6</td>
<td>DUE DATE</td>
</tr>
<tr>
<td>13</td>
<td>Packaging Date (YYMMDD)</td>
<td>n6</td>
<td>PACK DATE</td>
</tr>
<tr>
<td>15</td>
<td>Best Before Date (YYMMDD)</td>
<td>n6</td>
<td>BEST BEFORE or SELL BY</td>
</tr>
<tr>
<td>17</td>
<td>Expiration Date (YYMMDD)</td>
<td>n6</td>
<td>USE BY OR EXPIRY</td>
</tr>
</tbody>
</table>

• Plus dozens more…
User Memory Outline

• Conceptually, the contents of user memory is a collection of many data elements (name/value pairs)

• Challenges:
 – Efficient data compression / limited memory
 – Random access
 – Selection based on tag contents
 – Adding/updating/deleting data elements
 – Selective locking
User Memory Encoding

- All encoding schemes share a common format for the first eight bits of user memory, called the “Data Storage Format Identifier (DSFID)”:

<table>
<thead>
<tr>
<th>Access Method</th>
<th>Data Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identifies the encoding scheme used</td>
<td>Identifies which data system predominates (all encoding schemes allow escape to other data systems)</td>
</tr>
<tr>
<td>00 = no-directory</td>
<td>00000 = uninitialized tag</td>
</tr>
<tr>
<td>01 = directory</td>
<td>01001 = GS1 AIs</td>
</tr>
<tr>
<td>10 = packed objects</td>
<td></td>
</tr>
</tbody>
</table>
Example

Gen 2 RFID Tag

Bank 00 (Reserved)

Bank 01 (EPC)

Bank 10 (TID)

Bank 11 (User)

GTIN

Serial

Best-by Date

Batch

urn:epc:tag:sgtin-96:0.3123451.023456.1234

DSFID AI 15 = 991224; AI 10 = LV111
User Memory Encoding/Decoding

• Quite complex:
 – Efficient compaction for numeric, alpha data
 – Gen 2 “select” command support
 – Random vs sequential access, “directories”
 – Incremental add/update/delete
 – Selective locking
 – Multiple data systems

• Don’t try this at home! Use a commercial software package:
EPC Tag Data Standard
TID Memory Bank

• TID includes three things:
 – 12-bit numbers identifying the make and model of the tag (not the product to which the tag is attached)
 – (Optional) a serial number assigned at tag manufacture time, unique within the tag make/model
 – (Optional) flags that indicate which optional features the tag supports
 – Latter two are called the “Extended TID” (XTID)

• The TID serial number is *not* the same as the SGTIN
 – Not useful *as* the serialized identifier of the product:
 • Too RFID specific
 • Doesn’t identify product SKU
 • Different than existing product identification
 – Has applications for anti-counterfeiting
Other Data Systems – Identification

• Bit 17h of EPC memory is the “toggle”
 – If zero, remainder of EPC memory follows EPC standards (as previously discussed)
 – If one, remainder of EPC memory contains:
 • An “Application Family Identifier” (AFI) allocated by ISO for a specific purpose; e.g.:
 – C1 = IATA Baggage Identifier
 – C2 = Library loan item
 – Etc…
 • An application-specific identifier defined by some standard as indicated by the AFI
Other Data Systems – Supplementary Data

• Several different supplementary data systems exist:
 – GS1 Application Identifiers (AIs)
 – ANSI MH-10 Data Identifiers (DIs)
 – ATA Text Element Identifiers (TEIs)

• Each originated in a separate bar code world
• Rather similar in content
• In user memory,
 – The DSFID indicates which system predominates
 – All compaction schemes permit inclusion of elements from system other than what DSFID indicates
Summary

- Four types of Tag Data:
 - Identification
 - Supplementary data
 - RFID Control data (RFID-specific)
 - Tag Manufacture data (RFID-specific)
- Identification and Supplementary Data are defined by carrier-independent standards
 - Carrier-independent forms should be used in business applications,
 - …not the RFID-specific binary/hexadecimal forms
- Tag Data Standards give encoding/decoding rules for use in RFID
- Multiple standards exist, but tag data indicates which is used
About the Speaker

• Independent Consultant
• Specializing in EPC/RFID Standards adoption
 – Software architecture for enterprises and solution providers
 – Educational programs on standards tailored to clients’ needs
• Actively involved in EPCglobal standards development
 – Member, Architecture Review Committee
 – Editor, EPCIS specification
 – Co-chair, Filtering & Collection (ALE) Working Group
 – Editor, EPC Tag Data Standard
 – Contributor to five other software specifications
 – Member, Joint Strategy and Planning Committee

• Consulting Instructor for Academia RFID
Outline for Today

• 11:30: RFID Visibility Data for Business Applications
 – What’s the important data, and how do you use it?

• 12:15: RFID Data Capture Software
 – How do you collect the important data?

• Lunch

• 1:45: Putting It Together: Architecture, Product Selection and IT Governance
 – How do you build a complete system for the enterprise?

• 2:30: RFID Tag-Data Standards

• 3:30 (next): RFID Data-Capture Standards: LLRP and ALE